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1. INTRODUCTION 
Copenhagen is the capital of Denmark and the largest city in Scandinavia. It is 
located in the extreme east of the country, with suburbs spreading to the north, 
west and south, and a road and rail connection across the Øresund strait to 
Malmö in Sweden. In the conurbation there are extensive public transport 
networks, deploying several modes, while cycle use has increased, so that 
about one third of vehicular trips are now made by bike. Road congestion is 
quite severe on specific corridors at peak times. 
To improve travel opportunities and to address issues of infrastructure and 
network management, planners in the Greater Copenhagen Area (GCA) use 
cost-benefit analysis (CBA) to appraise alternative planning scenarios, each of 
which requires forecasts of travel demand, while forecasts are also needed to 
support the design of new infrastructure. Models predicting travel demand are 
therefore required. In the last 25 years the OTM model (Jovicic and Hansen, 
2003) has been used, generating confidence among users because of its 
accuracy with respect to base-year flows in traffic assignments, resulting from 
a careful validation (Vuk and Overgaard, 2006). 
An important contribution to the accuracy of OTM is the use of pivoting, i.e. the 
use of the forecasting model to predict changes relative to an accurately-
measured base situation. Pivoting is a procedure that has been used in travel 
demand forecasting for some time (e.g. Daly et al., 2005, 2011, which refer to 
earlier studies on pivoting) and is recommended by the UK government for 
studies carried out in Britain (DfT, 2014). It would not be acceptable in future 
model developments for the GCA to retreat from the accuracy offered by OTM. 
However, the range of policy issues to be considered in the GCA has become 
considerably wider, so that the ability of OTM to respond to the new 
developments and policy levers has come into question. Among the policy 
issues under consideration in the next few months and years will be: 

• extensive street management plans; 

• extensions of the metro; 

• the Grand Départ of the Tour de France (2022) requiring many road 
closures and reroutings; 

• road pricing, with prices specific to road and vehicle type, time of day; 
• far-reaching cycle priorities with ‘bike & ride’ facilities; 

• new parking policies and strategies; 

• a new comprehensive Mobility Plan; 
• prioritising electric cars and car-sharing. 

A proper approach to some of these issues requires consideration of the travel 
patterns of individuals and their households over a whole day or longer. The 
current OTM is a tour model, i.e. a model in which the basic unit of travel is a 
tour by an individual from home to one or more destinations before returning 
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home. Multi-tour and household interactions can be covered only approximately 
in a tour-based model. Moreover, the OTM is not the most sophisticated of the 
tour models currently in operation, particularly in the way it segments the 
population. In the context of the GCA, we can see transport choices as involving 
‘life-style’ choices between car, public transport and cycling as primary modes 
of transport, quite likely applying to all movements by an individual and to 
several household members. 
For these reasons a new activity-based model (ABM) was developed, which 
was given the name COMPASS. Activity-based models represent the daily 
pattern of out-of-home activity by a household and their travel is then derived 
from these predicted activities (see e.g., Ben-Akiva, Bowman and Gopinath, 
1996, Bowman, 1995, Bowman and Ben-Akiva, 2001 and Bradley, Bowman 
and Griesenbeck, 2010). COMPASS is believed to be the first fully featured 
operational ABM in Europe (i.e. a model simulating travel demand under time 
restrictions through to assigning traffic to networks), although such models are 
in operation in the US and in Israel. Academic projects in Europe have 
investigated ABM potential and produced partial models. One such project, 
ACTUM (ACTUM, 2011-2016), showed the possibilities for Copenhagen in the 
specific context of Danish data, developing model components and a basis for 
the planning of COMPASS development. An ABM offers a more complete and 
therefore in principle a more realistic representation of travel than a tour-based 
model, providing that accuracy can be maintained. 
The accuracy and credibility that had been achieved with OTM depend on the 
use of pivoting. However, pivoting has not been a feature of the ABMs that have 
been developed to date. The work described in this paper was therefore 
undertaken to implement pivoting for COMPASS. The base ‘pivot point’ relative 
to which the modelled changes are applied is a trip matrix, which is easier to 
relate to a tour-based model than to the day schedules and household travel 
patterns that are predicted and output by an ABM; the issue of pivoting from a 
trip matrix for an ABM is one we address in the paper. 
The following section of the paper presents the details of the general approach 
to pivoting, using OTM as an example. Section 3 describes the COMPASS 
model itself and section 4 the way in which pivoting has been implemented. 
Then we present the validation of the procedure and the base-year accuracy 
that has been achieved. A final section gives our conclusions. 
 
 

2. PIVOT IN A TOUR-BASED MODEL 
Pivoting for the COMPASS ABM has been developed from the pivoting process 
used for tour-based (and trip-based) models. As an example, we take the OTM, 
which covers the GCA and which uses the ‘8-case’ pivoting method specified 
by Daly et. al (2011). 
In the GCA, the base information on traffic flows is available as trip matrices, 
i.e. movements from a specific origin zone to a specific destination zone. It is 
relatively straightforward to apply a tour-based model to produce trip forecasts. 
Specifically, a tour from i to j yields trips from i to j and j to i, with adjustments 
for non-home-based trips to obtain a ‘synthetic’ forecast of total trips. 
The basic concept of pivoting is that the trip forecast is equal to the base matrix 
multiplied by the ratio of synthetic trips in the forecast and base situations. That 
is: 
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(1) Mijmpt = Bijmpt

SF,ijmpt

SB,ijmpt

= SF,ijmpt

Bijmpt

SB,ijmpt

 

where SB = modelled trips, i.e. synthetic trips, in base year 
 SF = synthetic trips for a future year/scenario 
 M = predicted trips for a future year/scenario 
 B = observed trips from base year matrix 
 i,j = origin and destination zones  
 m, p, t = mode (m), travel purpose (p) and time-of-day (t) 

 
We can define the growth factor G=SF SB⁄  and the correction factor C= B SB⁄  
(omitting other subscripts for clarity). The final term in equation (1) points to the 
possibility of using a more aggregate approach for C: 
 

(2) Mijmpt = SF,ijmpt

Ba(ijmpt)
SB,a(ijmpt) 

 
Here the subscript a(ijmpt) represents an aggregation over the dimensions of 
geography, mode, purpose and time. For example, aggregations in these 
dimensions can be used when the base matrix is not specified in as much detail 
as the synthetic forecasts, or when the base matrix is not reliable at detailed 
level because (for example) of sampling issues. Note that it remains possible 
in equation (2) to obtain forecasts at detailed level even if the correction factors 
are defined at a coarser level. 
Any combination of the three components of the calculation in equations (1 – 
2) can be zero, making the calculation impossible or at least questionable. The 
‘8 case’ approach specifies formulae to be used in each case arising when the 
terms in the equation are zero or non-zero. The calculations used for OTM are 
set out in Table 1. 
It may be noted that when SF = SB, the output forecast will always be equal to 
the base matrix B. 
 
Table 1: The 8-case pivoting method as applied in OTM 

Case Base 
(B) 

Synthetic 
Base 

Synthetic 
Future 

Predicted trips (M) 

1 0 0 0 0 
2 0 0 >0 SF 

3 0 >0 0 0 

4 0 >0 >0 
Normal 0 
Extreme* SF – k SB 

5 >0 0 0 B 
6 >0 0 >0 B + SF 

7 >0 >0 0 0 

8 >0 >0 >0 
Normal B SF / SB 

Extreme* k B + (SF – k SB) 
* The ‘extreme growth’ formulae are applied when SF > k SB, i.e. the growth in trips exceeds a 
pre-defined ratio. In practice, the assumption k=5 has proved to be satisfactory. 

 
An important issue in classifying cells in the matrix into one of the 8 cases is 
how ‘zero’ is defined. A value is taken to be zero when less than a given Z. The 
specification of Z depends on how the base and synthetic matrices are 
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calculated: for example, for OTM the value Z = 0.005 is used, but for COMPASS 
this has been reduced to Z = 0.001, because of sampling issues in the base 
matrix and in the simulation procedure that produces the synthetic matrices. 
Only the case where all of the components of the formula are positive, i.e. case 
8, uses the calculation as originally specified. It is also found by experience that 
case 8 gives the most satisfactory results, for example that the final forecasts 
are most consistent with the synthetic predictions of the model. The forecasting 
can be improved by a suitable choice of aggregation to reduce ‘sparsity’, i.e. to 
reduce the fraction of zeroes in the matrices and thus to increase the fraction 
of matrix cells that fall into case 8. A suitable choice of Z can also help here.  
When working with a tour-based model, an issue arises because the pivoting is 
done at trip level, to match the information in the base trip matrix, so that i-j 
pivoting may work out differently from j-i pivoting, particularly when separate 
pivots are calculated for separate time periods. Inconsistencies can be reduced 
by a process called ‘normalisation’, in which row totals in the matrix are 
corrected. Daly et al. (2011) discuss how normalisation can be applied, also in 
nested models. They also show that the pivoted model remains consistent with 
a utility maximisation paradigm, so that the model will behave in intuitive ways. 
 
 
3. THE COMPASS MODEL  
The COMPASS model (Copenhagen Greater Area Model for Passenger 
Transport) has been built for the Copenhagen Municipality and covers the GCA, 
an area of 60 sq. km. The model’s base year is 2017, and forecasts are 
produced for an average workday.  
The existing traffic tour-based model for the GCA, the OTM model, has been in 
use since 1995 with seven major updates. Considerable research on ABMs had 
already been completed at the Danish Technical University (DTU), for example 
in the ACTUM project funded by the Danish Transport Research Council 
(ACTUM 2011-2016), preceding the proposal for an ABM for the GCA in 2018. 
Given a synthetic population and detailed information about the region, such as 
employment, school enrolments, transport network, and parking supply, the 
demand model, running in DaySim1, operates iteratively with the network 
assignment models to generate predictions of the mode-specific traffic 
volumes. Within DaySim, an interconnected set of 26 choice models predicts 
(a) long-term choices, such as work location and car ownership, (b) day-level 
choices that define the overall pattern of activities, tours and trips for each 
household and its members, (c) choices of the tours made by the members of 
the household, including purpose, destination, mode and timing, and (d) 
choices of any additional stops made on those tours, including their purpose, 
location, travel mode and timing. COMPASS integrates the representation of 
activities and travel conducted by a household and its members over the course 
of an entire workday. About two million people in the GCA generate about ten 
million trips by all modes in an average workday in 2017, including trips crossing 
the area boundary. 
Innovative features in the COMPASS demand model include (a) detailed 
modelling of slow modes, including route choice models, (b) the introduction of 
family in-home quality time (Vuk et al, 2016), (c) a car ownership model 
including electric cars, autonomous vehicles and car sharing, (d) park-and-ride, 
‘kiss-and-ride’, ‘bike & ride’, and taking bicycles onto the train or metro, and (e) 
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a detailed model of parking in the Copenhagen city. Values of travel time are 
based on a large SC survey for the Copenhagen area in 2017 (Lu et al., 2021). 
COMPASS includes five assignment models. The car assignment includes 
static and dynamic (DTA) versions. Another advanced feature is a mixed use 
of schedule and frequency-based services in a public transport assignment 
(Eltved et al., 2017) that includes capacity restrictions. For example, waiting for 
an overcrowded metro or bus will cause the passenger to wait for the next 
departure or to make a new decision (e.g. change mode or route). Also, 
additional disutility is calculated for standing passengers. 
Copenhagen is known for its bicycle infrastructure, transport policies that 
support cycling, and a large share of bicycle trips within the city. COMPASS 
integrates a detailed bicycle assignment model with ‘bike & ride’ facilities at 
stations and the option of taking the cycle onto the train. As a further innovative 
feature, in COMPASS bicycle traffic causes extra delays for cars at street 
crossings. Finally, the walk assignment model, similar in structure to the bicycle 
model but without capacity restrictions, includes access and egress trips to 
public transport which make up 2/3 of all walk trips in the GCA, giving more 
accurate flows. 
COMPASS also includes an environmental model. This model deals with 
pollution, accidents, noise and changes in travel time, all of which can be 
applied in the feasibility analysis of planning projects. Being a fully 
disaggregated model COMPASS allows for CBA calculations separately for 
different social groups, which is considered to have a large potential for future 
users of the model because of the increasing gaps between social groups. 
An extensive demand model calibration was completed prior to undertaking the 
pivoting, most importantly related to the numbers of trips by mode and purpose. 
The target values for this calibration are summed from the 2017 base matrices, 
trip lengths and car ownership data. Here distance calibration is essential, and 
mode-specific piecewise linear distance terms were introduced (other options 
were also tested). 
The run time of the ABM to simulate one day of travel for a 100% population 
sample is 5 hours on a standard pc, but only 75 minutes on the high-
performance computers used for COMPASS. More approximate results can be 
obtained more quickly with smaller population samples. 
Running the COMPASS model, updating the networks, and showing model 
results is performed via the COMPASS User Interface (Israelsen, 2020), which 
is based on ArcGIS Enterprise2 and Traffic Analyst3. The key tables and figures 
as well as result maps are produced automatically after each run and can be 
accessed in the Traffic Analyst web site included in Compass. Examples of 
results available in the web site are: traffic volumes, capacity utilisation, queue 
lengths etc. Scenario inputs, like networks, are prepared in ArcMap with 
extensions from Traffic Analyst.  
 
 
4. PIVOTING IN COMPASS 
The ABM simulates a list of trips for each household and person. A 
straightforward approach would be to aggregate the output and conduct the 
pivoting as described above before assigning the trips to the networks. 
However, the approach has major disadvantages. First, detailed information is 
lost e.g., the linkage of persons and activities to travel. Second, the 
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disaggregate trips are not available for route choice modelling which would 
increase computing time and complicate the use of DTA. The computing time 
for route choice models depends on the number of elements in the 
segmentation of trips by travel purposes, zones etc. In OTM, the multi-
dimensional trip matrix includes several hundred million cells while the ABM 
produces only about 3 million records with car trips. Therefore, the method 
should attach a pivot factor to each simulated trip, which the DTA then uses as 
a weight when it assigns trips. 
The implemented method includes three elements: i) calculation of adjustment 
factors, ii) added trips, and iii) a weighting procedure. Adjustment factors are 
calculated using the 8-case approach of Table 1. The ABM simulates travel for 
the residents of the GCA whereas the base matrix is developed from observed 
trips, count data etc. and includes all trips within the area. Instead of expanding 
trips from the ABM to approximate non-resident trips, they are added as part of 
the pivot procedure. A weighting procedure is used to maintain consistency in 
the output from the ABM, for example, that the number of out-bound trips is 
equal to the number of home-bound trips. 
Table 1 indicates that the adjustment factors given in Equation (1) are relevant 
only when SF > 0, so that, when using these factors, and depending on the 
values of B and SB, the pivot table can be reduced to the four cases shown in 
Table 2, using the correction factor C and growth factor G. Given the simulation 
of synthetic trips, the value of SF is either zero (because there are no trip records 
in the cell) or equal to or larger than 1. Hence, the acceptance level Z is only 
relevant for base year trips (B). A suitable value of Z = 0.001 has been 
determined. The value of k = 5 is adopted from OTM. 
 
Table 2: Adjustment factors applied to output SF from the ABM 

Cas
e 

Base 
(B) 

Synthetic 
Base 

Condition Adjustment factor 

2 0 0 SF > L (SF – L) / SF 

4 0 >0 G > k 1 – k / G 

6 >0 0 SF > B (SF – B) / SF 

8 >0 >0 
G ≤ k C 

G > k 1 + (C – 1) k / G 

 
In case 2, B and SB are zero whereas SF > 0, which usually indicates green-
field developments. However, for the ABM it also includes random noise from 
simulation. A minimum value (L) is introduced to reduce inconsistency 
compared to the base year. Tests have shown that results are relatively 
insensitive to values between 5 and 10. Here, a value of L = 5 is used. In case 
6, only when trip sums are larger than observed in the base year should records 
from the activity-based model be adjusted, to avoid double counting of trips in 
the added trip matrix. 
If trips are observed without any synthetic trips (case 5 in Table 1), for example, 
bicycle trips made by tourists in downtown Copenhagen which are not modelled 
by the ABM, adjustment factors cannot be applied. Hence, the observed base 
year trips (B) should be segmented into non-resident trips and resident trips 
where the former is used as added trips and the latter for pivoting. Since 
information is not available for splitting the trip matrix into the two categories, it 
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is assumed that 5-10% of all trips (depending on travel mode) within GCA are 
made by non-residents. Then, the added trips are estimated as the difference 
between observed base year and pivoted synthetic base year trips.  Due to the 
added trips and weighting procedure explained below the observed base year 
matrix B is not exactly reproduced when SB = SF. 
Finally, a ‘normalisation’ procedure applies row-normalisation factors at cell 
level to ensure the origin totals remain consistent with expectation. 
The ABM simulates tours and joint tours among household members. Tours are 
made by a single person of the household. Fully joint or partial joint tours occur 
when two or more persons from the household travel together on the full tour 
or part of the tour e.g., one person may travel with another person from the 
same household on the outbound half of the tour and with a different household 
member on the home-bound half of the tour. COMPASS predicts more than 
80% of all trips to be part of single person tours. 
If public transport is used on a tour, it will most likely be the main mode with the 
longest travel distance of the tour. If car is used on the tour, it is more likely to 
be the main mode rather than bike or walk. Therefore, we define the main tour 
mode (public transport, car driver, car passenger, bike, and walk) by the 
following simple rules. The tour mode is: 

1. public transport if used, otherwise 
2. car, if a car is driven, otherwise 
3. car passenger if it occurs, otherwise 
4. bike if used. 

Walk forecasts are not considered for pivoting because data do not support 
development of a base matrix. The adjustment factor is therefore set to 1 and 
the weight to 0 if other modes are used on the tour. 
The travel purposes are identified for trips where the trip mode is equal to the 
tour mode. Tests of different weighting of travel purposes e.g., higher weight to 
commute trips than to leisure trips, have been made without improving the trip 
length distribution or traffic flows compared to counts. Therefore, all travel 
purposes made by the main mode on the tour are assigned a weight of 1. All 
other trip modes and purposes are assigned a weight of 0 for calculation of the 
matrices for pivoting. (When the pivoting is carried out, all trips within the tour 
receive the factor corresponding to the main tour purpose and mode.) 
Adjustment factors are assigned to trips and multiplied by a weight factor of 1 
or 0 as calculated above. Then factors are averaged over tours, joint tours and 
households. This is done for factors at cell-level, at row-level, and after row-
normalisation. 
The implemented method ensures the same adjustment factor across all trips 
within tours, joint tours, and households in which partial joint tours are made. 
 
 
5. VALIDATION OF THE METHOD 
 

5.1 Aggregation of dimensions for pivoting 
It is possible to calculate adjustment factors aggregated over dimensions as 
shown in equation (2), as a balance between reliability and accuracy. 
Aggregation improves reliability because sampling effects are reduced and 
pivot case 8 (all values > 0) happens more frequently, but it may worsen 
accuracy, for example in the trip length distribution. Extensive tests have been 
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conducted to find a suitable aggregation of zones, modes, purposes, and time 
periods. 
The base year trip matrices for car and cycle use 4059 zones, whereas those 
for public transport represent trips between 3292 terminals. Running pivoting 
without any geographic aggregation was immediately rejected because of the 
sparsity of the synthetic matrix (recall that the ABM uses simulation and 
therefore many cells are not sampled in a given run). Two levels of aggregation 
using the zonal systems of the Danish National Model (LTM) were analysed: 
simply many-to-one aggregations of zones in COMPASS to the two systems of 
266 LTM-zones and 1003 LTM-zones. Public transport terminals were mapped 
to the LTM-zones for pivoting. 
The advantage of using an aggregation to 266 zones is a less sparse synthetic 
trip matrix, i.e., a low share of trips where B > 0 and SB = 0. However, the 
disadvantages compared to the less aggregate 1003 zones were a less 
accurate trip length distribution and significantly lower flow accuracy, so that it 
was decided to use 1003 zones in the pivot point procedure. 
Base year matrices are developed from travel survey data and passive data 
(e.g., National Travel Survey, smart card data, and GPS data) and count data 
for cycle, single occupancy vehicles (SOV), high occupancy vehicle drivers 
(HOV), car passengers, and public transport. Since the estimated split between 
SOV and HOV in the base year matrices at OD level is less accurate, 
adjustment factors are differentiated by the following four modes: 

1. Cycle 
2. Car driver 
3. Car passenger 
4. Public transport 

The base year trip matrices are segmented into 6 travel purposes (as listed in 
Table 3). In pivoting, aggregation of travel purposes changes the split of trips 
by purpose which complicates the analysis of the model predictions by purpose. 
For example, work and education trips by car have completely different travel 
patterns and the aggregate is dominated by work trips giving a wrong travel 
pattern for educational trips. It was considered more important to allow the user 
to analyse results by purpose than reduce sparsity. 
The base year trip matrices are split into 10 time periods. The assignment of 
trips to time periods is somewhat arbitrary due to the matrix adjustment 
procedures (Nielsen, 1998; Nielsen et al., 2006; and Bagger, 2020) where the 
trip pattern is adjusted to match counts. Therefore, the mapping between the 
ABM and trip matrices is not exact with respect to time periods. An aggregation 
of all time periods was tried but gave incorrect peak flows because the ABM 
was not able to predict the variation of departure times across the GCA 
sufficiently accurately. The most accurate flows were achieved with an 
aggregation into 6 periods differentiating between peak hour and peak hour 
shoulders in the morning period. 
The above aggregation gives matrix dimensions: 1003 zones, 4 modes, 6 
purposes and 6 periods, in total 1003 x 1003 x 4 x 6 x 6 = 144,865,296 cells. 
 
5.2 Analyses of sparsity 
COMPASS is run multiple times with different seed values to improve coverage 
of the dimensions described above. Tests showed significant improvement in 
coverage with 10 runs compared to 2 and 5 runs. Computing time for 10 
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executions with a 100% population is about 12 hours on the COMPASS 
computer. The same sequence of seed values is used to avoid spurious 
differences caused by ‘chatter’. Consistency with respect to sampling is 
particularly important for the effectiveness of pivoting. 
Table 3 shows the proportion of trips that are in the standard pivot case where 
B > 0 and SB > 0 (case 8) by mode and travel purpose. Case 8 occurs for 79% 
of all trips. The lowest shares are for educational and business trips, while car 
passenger and public transport have lower shares than cycle and car driver. 
 
Table 3: Trip shares in normal case where B > 0 and SB > 0 (case 8) 

Purpose Cycle Car driver 
Car 
passenger 

Transit Total 

Home-Work 80% 74% 23% 80% 75% 

Home-Education 76% 25% 41% 69% 62% 

Home-Shopping 90% 85% 79% 83% 84% 

Home-Leisure 90% 93% 88% 80% 89% 

Other leisure trips 87% 79% 67% 81% 78% 

Business 63% 61% 19% 54% 57% 

Total 84% 80% 73% 78% 79% 

 
Further analysis shows that the majority (16%) of the cells that do not fall in 
case 8 are cases where B > 0 and SB = 0 (case 6). That is, sparsity of the 
synthetic trip matrix is the main cause of the loss of coverage in Table 3, since 
only 100% - 79% - 16% = 5% of these trips are due to sparsity in the observed 
base year matrix (case 4). In particular, there is a discrepancy between the 
observed and synthetic matrices for education and business, and for car 
passenger trips, making pivoting less reliable than for other modes and 
purposes. For example, a high share for case 6 is observed for educational trips 
by car which means that their improvement in accuracy by pivoting is 
questionable. Fortunately, there are few educational trips by car within the GCA 
(2.4% of all car trips). 
 
5.3 Analyses of trip length 
The impact of pivoting on the mean and distribution of trip length was analysed, 
because trip length is important for the sensitivity of the model and flow 
accuracy. Synthetic output from the ABM was compared with trip lengths from 
the observed base year matrices based on straight line distances between 4059 
zones. 
In Figure 1, the orange columns show the trip length distribution after pivoting 
home-work trips by car. The x and y axes represent distance intervals in km 
and the share of total trips. It shows a good fit with only a small underestimation 
of long trips and an overestimation of very short trips. In contrast, the result 
before pivoting showed a significant underestimation of trips with lengths of 1 
to 7 km and an overestimation of trips with lengths of 13 to 37 km. 
Table 4 shows the differences in average trip lengths after pivoting compared 
to observed data. In total, the table shows that the predicted trip length is 5% 
less than observed: a distance of 300 metres. The largest relative divergence 
is observed for home-based leisure trips. The divergence across all modes is 
18% for home-leisure trips. 
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Figure 1: Trip length distribution after pivoting home-work trips by car compared to observed data 

 
 
Table 4: Relative difference in average trip length between observed data and result after pivoting  

Purpose Cycle Car driver 
Car 
passenger 

Transit Total 

Home-Work -27% -11% -33% -1% -12% 

Home-Education -18% -14% -19% -14% -12% 

Home-Shopping 0% -12% -17% -11% -11% 

Home-Leisure 30% 25% 16% -11% 18% 

Other leisure trips 34% -8% -20% -15% -10% 

Business 29% -1% -1% 19% 1% 

Total 1% -6% -11% -7% -5% 

 
5.4 Sensitivity analyses 
Pivoting changes the elasticities compared to the synthetic output due to 
corrections of mode shares and adding of fixed trips. The impact of pivoting was 
tested for three scenarios: i) public transport fare increased by 20%, ii) public 
travel time reduced by 10%, and iii) car driving costs increased by 20%. 
Adding fixed trips naturally damps elasticities compared to the synthetic results. 
Therefore, Table 5 includes elasticities before adding (‘Cor.’) and after adding 
fixed trips (‘Cor.+ add trips’) in comparison to the synthetic elasticities.  
In the fare scenario, the differences between the synthetic elasticities and the 
corrected results are marginal, and the fixed added trips explain the differences 
between the synthetic and resulting elasticities after pivoting. In the driving cost 
scenario, the pivot corrections reduce the shift from SOV to HOV marginally. 
The sensitivity is as expected higher for travel times than costs. The transit 
elasticity changes from -0.673 to -0.749 after pivot corrections, most likely due 
to an increase in long trips not supported by observed trips (case 4). After 
adding external trips, the difference is reduced. 
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It is observed that walk and cycle trips increase when transit fare or travel time 
is reduced. Walk and cycle trips are positively correlated with public transport 
trips because of access and egress trips to public transport. 
 
Table 5: Elasticities before and after pivot correction  

Purpose Transit fare Transit travel time Car driving costs 

 Synth 
Correct
ed 

Cor.+ 
add trips 

Synth 
Correct
ed 

Cor.+ 
add trips 

Synth 
Correct
ed 

Cor.+ 
add trips 

Walk -0.063 -0.061 -0.061 -0.256 -0.174 -0.174 0.035 0.030 0.030 

Cycle -0.003 -0.007 -0.007 -0.006 0.003 -0.003 0.069 0.065 0.060 

SOV 0.036 0.035 0.031 0.120 0.118 0.106 -0.107 -0.099 -0.089 

HOV 0.033 0.030 0.024 0.098 0.089 0.072 -0.026 -0.042 -0.034 

Car pas. 0.039 0.036 0.029 0.190 0.172 0.141 -0.068 -0.064 -0.052 

Transit -0.180 -0.181 -0.170 -0.673 -0.749 -0.702 0.126 0.115 0.108 

Total -0.030 -0.029 -0.027 -0.121 -0.092 -0.086 0.004 0.002 0.002 

 
 
6. BASE YEAR ACCURACY 
 
6.1 Estimates of accuracy for car flows 
Car flow accuracy is assessed by comparing DTA with observed traffic volume 
on 2,553 network links.  
Given a link i with observed traffic xi and estimated traffic yi, the vehicle km is 
the product of volume and link length li. Assuming that the network is stratified 
into H strata e.g., by link type or volume, the ratio estimate (Cochran, 1977) is: 

(3) R � = 
1

Q
� Qh

q	
yh

q	
xh

H

h=1

 =
1

Q
� Qh

∑ liyii∈h∑ lixii∈h

H

h=1

  

Where Q is population kilometrage. Approximating the population kilometrage 

by estimated vehicle km we get a ratio estimate R� = 1.00, i.e., there is no overall 
bias between modelled and observed traffic. There is an overestimation of 
traffic on roads with less than 1,000 vehicles per day by 30%. Overestimation 
on minor roads is inevitable because the model includes only a sample of these 
and traffic is usually loaded onto local roads located close to the zone centroid. 
Also, many traffic counts on minor roads are one-day manual counts from 8 
a.m. to 6 p.m., giving quite large sampling errors (Tolouei et al., 2016). Roads 
with more than 1,000 vehicles show no bias at 95% confidence limits (for 
calculation of confidence limits see Cochran, 1977). 
The Percent Root Mean Square Error (%RMSE) is often used (Vuk and 
Hansen, 2006) to evaluate accuracy at link level. Given a sample of n links it is: 

(4) %RMSE = 1

X
�∑ (Yi-Xi)2n

i=1

n-1
 

The overall estimated average accuracy is %RMSE = 17.8%. In comparison, 
the accuracy achieved for OTM7, delivered in August 2018, was 20%. 
Validation of OTM (Vuk and Hansen, 2006) only provides accuracy estimates 
for morning and afternoon peak periods, based on much smaller samples of 
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counts, 38% and 47%, respectively. In COMPASS, the corresponding values 
are 29% and 23%, again more accurate than OTM. 
The UK Department for Transport (DfT, 2013) provides advice on validation and 
acceptability for assignment models. The WebTAG criteria are shown in Table 
6 factored to 24-hour flows. The last column shows that COMPASS comfortably 
meets these criteria. 
 
Table 6: Comparisons with WebTAG individual link validation criteria 

Daily flow (vehicles) Allowed divergence Acceptability guideline COMPASS 

0 – 16,800 2,400 vehicles >85% 92% 

16,800 – 64,800 15% of counted flows >85% 92% 

Over 64,800 9,600 vehicles >85% 100% 

 
6.2. Estimates of accuracy for public transport passengers 
Table 7 shows statistics on public transport boarding passengers by mode for 
a working day in 2017. There is no bias in estimated train passengers whereas 
bus passengers are slightly overestimated. 
The relative accuracy is given by %RMSE. Metro and S-Train are the most 
accurately modelled. Bus has as expected the lowest relative accuracy 
because it is difficult to estimate bus passengers at individual bus stops 
accurately. A comparison to OTM 7 reveals higher accuracy for COMPASS. 
For example, OTM 7 achieves a %RMSE-value of 23% for S-train whereas 
COMPASS achieves 15%. 
 
Table 7: Statistics for estimated and observed passengers on a working day in 2017 

Mode No. of Average volume Divergence %RMSE 
 stations/stops Obs. Model   

Bus 8,020 75 77 3.9% 107.4% 

Metro 22 9,082 9,132 0.6% 8.3% 

S-Train 84 5,428 5,395 -0.6% 15.0% 

Regional train 32 4,917 4,779 -2.8% 34.3% 

Local train 75 296 314 6.1% 43.6% 

 
 
7. SUMMARY AND CONLUSIONS 
Planners in the GCA wish to consider a broad range of policy options, which 
include several options that could have impacts on the travel patterns of 
individuals and households over the whole day. For this reason they chose to 
develop an ABM, COMPASS, to make the travel demand forecasts required for 
the appraisal of infrastructure and policy scenarios. 
COMPASS must achieve similar levels of accuracy as the existing transport 
model OTM. Therefore, pivoting was also required for COMPASS, requiring 
new methods, because pivoting has not been a standard part of ABM systems; 
indeed, we are not aware of other ABMs using pivoting. This paper describes a 
successful implementation of pivoting in COMPASS giving satisfactory results, 
in the sense that the match to observed flows is within the confidence limits, for 
both car and public transport. Moreover, the fit is somewhat better than for 
OTM. Other criteria, such as those used in the UK, are also comfortably met. 
We conclude that the introduction of pivoting to COMPASS makes the model 
thoroughly acceptable for use in the GCA. 
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NOTES 

 
1 DaySim is an activity-based travel demand model system proposed in 1994 by Ben-Akiva et al. (1996), 

demonstrated as a prototype for the Boston metropolitan area (Bowman, 1995; Bowman and Ben-Akiva, 
2001), implemented operationally for Sacramento, California (Bradley et al., 2010) and subsequently 
enhanced and used in many United States locations in collaboration with RSG, Inc. 
2 See www.esri.com.  
3 See www.rapidis.com. 


